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Fig. 1. AnX-shellis a deformable mechanism that can be assembled from linear beam elements in a flat configuration and deployed to a desired 3D target
form. Our algorithm computes the layout and parameters of the flexible beam network as well as a sparse pa ern of actuation forces required to deploy the
structure. The sequence illustrates the deployment process, where torque actuators at the joints are stylized in red and blue. The top right image shows a

design study for a potential architectural application with additional cladding.

We presentX-shellsa new class of deployable structures formed by an en-
semble of elastically deforming beams coupled through rotational joints. An
X-shell can be assembled conveniently in a at con guration from standard
elastic beam elements and then deployed through force actuation into the
desired 3D target state. During deployment, the coupling imposed by the
joints will force the beams to twist and buckle out of plane to maintain a state
of static equilibrium. This complex interaction of discrete joints and contin-
uously deforming beams allows interesting 3D forms to emerge. Simulating
X-shells is challenging, however, due to unstable equilibria at the onset of
beam buckling. We propose an optimization-based simulation framework
building on a discrete rod model that robustly handles such di cult scenar-
ios by analyzing and appropriately modifying the elastic energy Hessian.
This real-time simulation method forms the basis of a computational design
tool for X-shells that enables interactive design space exploration by varying
and optimizing design parameters to achieve a speci c design intent. We
jointly optimize the assembly state and the deployed con guration to ensure
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the geometric and structural integrity of the deployable X-shell. Once a
design is nalized, we also optimize for a sparse distribution of actuation
forces to e ciently deploy it from its at assembly state to its 3D target state.
We demonstrate the e ectiveness of our design approach with a number
of design studies that highlight the richness of the X-shell design space,
enabling new forms not possible with existing approaches. We validate our
computational model with several physical prototypes that show excellent
agreement with the optimized digital models.
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1 INTRODUCTION

Modeling and simulation of deformable objects is a core topic in
computer graphics. Recent e orts have focused on predictive simula-
tion and design exploration of physical structures for computational
design and fabrication [Attene et al. 2018; Bickel et al. 2018].

An interesting class of deformable objects are deployable struc-
tures that can transition between two or more distinct geometric
con gurations [Guseinov et al2017; Kilian et al2017; Konakovi¢-
Lukovi¢ et al 2018b; Pérez et.8&2017]. In architectural desiggrid-
shellsare a particularly intriguing example. Pioneered by V. Shukhov
in 1896, gridshells have later been re ned by Frei Otto in iconic de-
signs such as the Mannheim Multihalle [Liddell 2015]. Gridshells are
assembled on the ground as a regular quadrilateral grid of exible
beams that are connected at rotational joints. The joints allow the
quads to shear which in addition to the elastic deformation of the
beams enables the structure to be deployed to a curved surface (see
Figure 2, top). Gridshells are attractive in architecture because they
are lightweight and structurally e cient [Mesnil 2013]. However,
relatively few realizations exist today, mainly due to the complex-
ity of deployment: a gridshell assumes its desired shape when the
boundary nodes are forced towards pre-de ned positions, which
necessitates tailor-made erection equipment and signi cant tempo-
rary formwork [Quinn and Gengnagel 2014]. In addition, traditional
gridshells have a fairly limited space of realizable geometries and
often su er from stress concentrations that can lead to material
failure [Tayeb et al. 2013].

We address these drawbacks and propose a new deployable struc-
ture calledX-shell Similar to gridshells, an X-shell is formed by a
network of interconnected beams that are assembled in a at con g-
uration. In contrast to gridshells, however, these beams do not form
a regular grid, nor are they necessarily straight in the at assem-
bly state. More importantly, the deployment of X-shells is achieved
through intrinsic actuation, i.e. by applying a torque at certain joints
to expand the initially at beam network (Figure 1). The target shape
of an X-shell is encoded in the at rest con guration and does not
rely on constraints imposed on the boundary nodes. Therefore, the
deployment does not require any formwork or complex support
structures. Note that a traditional gridshell actuated in this way
would simply shear in the plane and not assume a curved 3D shape.

In our work, we leverage the incompatibility of the beam net-
work in terms of a linkage mechanism to force the beams to buckle
out of plane and assume the desired curved target shape. As such,
X-shells can be considered as a special kind of mechanical linkage
where the commonly used rigid elements are replaced by exible
elements that can bend and twist. This unique dynamic behavior
poses signi cant challenges for robust numerical simulation and
design optimization that we address in this paper.

Computer graphics research has studied numerous other types
of shape-shifting or deployable structures that we discuss more
thoroughly in Section 2. What is common to these methods is that
the kinematics of deployment as well as considerations about mate-
riality, fabrication, and assembly impose numerous geometric and
physical constraints. These constraints typically de ne intricate
design trade-o s that can be extremely di cult to navigate by hand.
As a consequence, e ective design exploration is often only possible
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Fig. 2. Atraditional gridshell is formed by a regular grid of elastic beams
that assumes a curved shape when li ed and fixed along the boundary to a
pre-defined curve. In contrast, X-shells have their target shape encoded in
the flat non-uniform layout and can be deployed to an equilibrium state
via actuation at a small set of jointsTop images from the Solidays' Festival
[Caron et al. 2012] by permission of Cyril Douthe.

with computational support. This is certainly true in our case, where
the coupling of elastic beams in the network de nes a complex de-
formation behavior of the structure that is very hard to predict or
control manually.

ContributionsTo facilitate predictive form- nding and interac-
tive design of X-shells we introduce the following core technical
contributions:

An e cient and numerically robust simulation algorithm to
compute the 3D equilibrium states of an X-shell under torque
actuations at the joints;

an optimization approach that adapts the design parame-
ters of an initial at assembly state so that it deploys into a
low-stress state that remains close to a given 3D reference
geometry; and

an algorithm to compute a sparse set of actuated joints for
driving the deployment from at to target shape.

We combine these methods into a computational tool for interac-
tive exploration of X-shell designs. We show that X-shells o er a
rich design space that enables the construction of new deployable
structures not possible with existing methods. We highlight applica-
tions in architecture and demonstrate the validity of our approach
through several design studies and physical prototypes.

Overview.The rest of the paper is organized as follows: After
discussing related work, we de ne in Section 3 our mathematical
representation that encodes all the relevant geometric and physical
parameters of an X-shell. Sections 4 to 6 then present the core techni-
cal contributions listed above, i.e. algorithms for forward simulation,



design optimization, and actuation sparsi cation. In Section 7 we
show results created with our approach, before concluding with a
discussion of limitations and ideas for future research.

We discuss additional implementation aspects of our numerical
optimization methods in the appendix and have released a C++
implementation of our simulation algorithms, along with Jupyter
notebooks for simulating and visualizing the deployment for all
X-shells shown in the paper, dittp://lgg.ep .ch/XShells Please
also refer to the supplemental material, where we provide detailed
derivations of our energy and constraint functions, gradients, and
Hessians.

2 RELATED WORK

Computer graphics and related disciplines have recently seen in-
creasing interest in computational design for digital fabrication. For
a general overview we refer to recent surveys [Attene et2018;
Bermano et al2017; Bickel et aR018]. The main application do-
main of our work is architectural design and we refer [Pottmann
et al 2015] for a broad discussion on recent advances in the eld of
architectural geometry. Here we focus the discussion on prior art
that is most closely related to our work.

Curved Surfaces from Flat Materigds important aspect of X-
shellsis that they can be assembled in the plane and then deployed to
the desired 3D target shape. A series of recent papers explore di er-
ent ways to form 3D shapes from easy-to-fabricate planar materials.
[Schiller et al2018] propose a method for the design and fabrication
of complex surfaces with a single, ribbon-like piece of at fabric.
When zippered up along its boundary, the fabric approximates a
given 3D shape. Malomo and colleagues [2018] design at, exible
panels from spiraling microstructures. The panels are optimized
to be in a static equilibrium when assembled to match a desired
3D surface. [Konakovi¢ et 22016] leverage conformal geometry
to rationalize curved surfaces with auxetic materials, created by
cutting inextensible sheet material with a xed patterns to enable
limited uniform stretching. [Garg et a2014] utilize Chebyshev nets
to create 3D designs from woven metal wires arranged in a regular
grid.

Deployment-aware Desig@ther works have explored fabrication-

aware design that also takes into account the deployment process.

[Kilian et al. 2017] propose a method for curved folded surfaces
that transition from planar sheets to freeform shapes actuated by a
network of strings, making the actuation process an integral part
of the structure. Rigid-foldable origami can also be used to design
deployable shells at architectural scale [Tachi 2013]. Inspired by
the mechanism of the Hoberman Sphere, [Zheng ePfll16] design
deployable rigid scissor linkages that approximate 3D models while
ensuring a collision-free expansion path.

Several previous works have studied how to encode a target 3D
shape into a at sheet of material augmented with an actuation logic.
[Guseinov et al2017] and [Pérez et a&2017] use prestressing as a
driving force. They embed 3D printed elements in a pre-stretched
membrane which contracts to a prescribed 3D form when released.
[Konakovi¢-Lukovi¢ et al2018a,b] work with varying scale auxetic
materials and rely on in ation and gravitational loading to deform
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a at sheet towards the desired 3D con guration. [Celli et.&018]
show how curved shapes can arise through buckling of planar elastic
sheets when suitable architected patterns are cut into the material.

In our approach we simulate and optimize a network of elastic
beams coupled with rotational joints. This setup is fundamentally
di erent from the above methods, both in the physical composition
of the structure and the applied deployment mechanism. Conse-
quently, we need a new representation and optimization approach
to accurately model the behavior of X-shells.

Mechanical Linkage&inematic linkages have been used to create
animated structures whose rigid parts trace out user-speci ed planar
curves [Bacher et aRP015; Ceylan et aP013; Thomaszewski et.al
2014]. Our X-shells' buckling behavior suggests a possible avenue to
extend these methods to generate out-of-plane motion by harnessing
the buckling of deformable, geometrically incompatible parts.

GridshellsThe closest form of deployable structures to our X-
shells are elastic gridshells. Here we do not consistaticgridshells,
e.g. [Mesnil et al2017; Pietroni et aR015; Tang et ak014; Tonelli
et al 2016] that are not deployable and thus need to be constructed
incrementally in place.

Traditional elastic gridshells are composed of straight elastic
beams linked to form a regular quadrilateral grid. They achieve
their nal shape by active bending [Du Peloux 2017; Lienhard 2014].
The main methods of erection amull up with cranes and cables,
push upwith static framework and jacking towers, anélase down
with hydraulic and mechanical formwork [Quinn and Gengnagel
2014]. Contrary to our setup, the nal shape of a gridshell is largely
determined by its boundary, where boundary nodes have to be
explicitly xed to a prescribed location. During erection, a gridshell
often has to go through high-energy con gurations until it settles
in the nal shape when the boundary is xed. To increase safety
and reduce the time and cost of manufacturing and erecting an
elastic gridshell, [Liuti et al2017; Quinn and Gengnagel 2014] study
erection with pneumatic formwork.

[Hernandez et al2012] and [Hernandez et a&2013] present a
variational approach to modeling elastic gridshells, where joints
are allowed to deviate from the regular grid locations. Their goal
is to improve the structural performance of gridshells by reducing
the curvature of beams, while our focus is on accurate and robust
simulation of the physical behavior of exible linkages that are
directly optimized to minimize elastic energy.

Rod SimulationVarious approaches for elastic rod simulation
have been studied in [Bertails et.&006; Pai 2002; Spillmann and
Teschner 2007; Umetani et 8014] based on Cossarat theory and
in [Rosenblum et al. 1991; Selle et al. 2008; Iben et al. 2013] using
mass-spring models. Our numerical simulation of X-shells is based
on the discrete elastic rods model rst proposed in [Bergou et al
2008]. Speci cally, we use the e cient framed curve representation
from [Bergou et al 2010], which updates the frame using parallel
transport over time to ensure sparse Hessians.

This elastic rods model was extended by [Pérez ef@all5] to
model elastically deforming connections between rods in order to
simulate and design exible rod meshes that closely approximate
target deformations. A similar elastic joint model has been used to
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model networks of elastic rods in [Zehnder et &016] to design
attractive and robust curves that Il'in a target surface, in [Malomo
et al 2018] as a homogenized model for exible spiral microstruc-
tures, and in [Schumacher et.&018] to determine the homogenized
mechanical properties of isohedral polygonal tilings of rods. Baek et
al. [2017] use the discrete elastic rods model to simulate traditional
elastic gridshells, modeling the joint constraints with positional
springs (rods remain twist free). They use Chebyshev nets to design
the gridshell boundaries to achieve simple surface building blocks
and show how these can assembled into more interesting structures.
All these methods have shown the discrete elastic rods model's
excellent agreement with physical prototypes.

We extend the elastic rods model with constraints to properly
capture the connection of rod ends at the joints. Furthermore, we

can handle arbitrary rod cross-section pro les, which provides addi- k 1 I '2
tional degrees of freedom for design and enables us to incorporate I2
important fabrication requirements. 2 ék Zié .
3 k 2y « *3
3 X-SHELL REPRESENTATION gaé « Eé
X-shells are networks of elastic beams that are linked at rotational sz ‘
joints (see Figure 3). We de ne the topology of the network with a
. 2 Jgframe angle o
graph, where each node represents a joint and each edge denotes a x 3%
beam segment. We currently restrict our representation to quadrilat- r_l :Sfx g it '_y 3 position
eral topologies, where every interior node has valence four (hence : rods rii position 24
the nameX-shel) and boundary nodes have valence three, two, or _ XR _ @rjZ b gt 2 . )
. X = =0 r ] = 2 orientation

one. A node with valence one denotes a free end of a beam. X3 i1 : 3

We base our numerical simulation of X-shells on the discrete : joints k 2x 3 é;angle
elastic rods model of [Bergou et.&010]. This model allows us to k 2y I % edge
capture the elastic forces induced by bending, twisting, and stretch- i k 2z 1,4 lengths
ing the structure's beams. Every beam segment connecting two k1
joints is represented as a distinct elastic ro@ R, discretized with Fig. 3. X-shell representation. The network of elastic beams is modeled as
k linear elements. Constraints are added to properly couple the rod a collection of individual rods coupled at rotational joints. The vector
ends at the joints. aggregates all the variables of our reduced model representation designed

The joints themselves store no elastic energy; they simply con- to facilitate e icient and robust numerical computations. Note that two rod
strain the incident beam segments to pass through a common point position vectors and one frame angle at each end of a rod are defined by
with compatible orientations and material axes. We impose these the variables of the corresponding joint.
joint constraints exactly by constructing a reduced set of variables
x 2 RM that parametrize the space of properly joined rods. Speci -
cally, for each joint we de ne nine variables controlling its position,
orientation, opening angle, and two edge lengths (Figure 3). These
variables fully determine the material axis angle and the two cen-
terline positions for the terminal edge of each incident elastic rod
(dark gray dots on the left in Figure 3). Note that two rods connect-
ing across a joint have overlapping terminal edges; we halve the
stretching sti nesses of these edges to avoid double-counting their
energy. All of the remaining rod centerline positions and material
angles (for internal edges and free ends) are included as reduced
variables inx. The position and orientation of a single jointis xed
(removed fromx) to pin down the structure's rigid motion.

We can calculate the elastic energy stored in a given X-shell con-

guration with reduced variablex by summing the elastic energies

HereEs, By, andE are the stretching, bending, and twisting ener-
gies, respectively; is a nonlinear function computing the center-
line position and material angle variables for redrom the reduced
variablesx, andp is a vector that stores the rest lengths for each
beam segment. The per-edge stretching and per-vertex twisting
energy expressions are taken from [Bergou et 2010]. For the
per-vertex bending energy term, we note that averaging the ma-
terial axes onto the vertices, as e ectively done in [Bergou et al
2010] and the recent computational fabrication papers using this
method, yields a non-orthonormal material frame in the presence of
twist. We prefer the original, more physically meaningful bending
energy of [Bergou et al2008], which averages the two curvature
energiesomputed with each incident edge's quadratic form. Our
framework implements both bending energies, and we provide de-

of each rod: : . ; .
tailed expressions for all energy terms in the supplemental material.
; Our supplement also points out errors in the analytic gradients and
@i . O )
Eix; p° = Estvy 3% p° + By vy X% p° + By bvy 3% p% (1) HeSS|an_s provided in [Bergou et.&010] and provides corrected
r=1 expressions.
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Fig. 4. Computing the twisting sti nesk; for an arbitrary beam cross-
section profile . Colors show the warping displacement function. The
examples in the bo om row are re-scaled to match the same color map.

Material Parametersihe deformation behavior of an X-shell as
described by (1) depends on the geometric structure of the linkage
and the elastic properties of the beams. For a single beam of a given
homogeneous material, the sti ness parameters for stretchigg
bendingky,, and twistingk: depend on the Young's modulisand
shear moduluss of the material, as well as the cross-section pro le

of the beam. Following [Landau et.d989], we can compute the
sti ness parameters as:

Stretching sti nessks = EA whereA is the area of ;
2
y Xy

Bending sti nessky, = EIl, wherel = 5
Xy X

dxdy
is the moment of inertia tensor;
Twisting stinessky = Gk xy +r Kk2dA, where is

a scalar eld de ned on that represents the out-of-plane
displacement under an applied torsion; it satis es the Laplace
equation4 =0in with Neumann boundary conditions

y
X on@ .

We compute these sti nesses by meshing the cross-section with
Triangle [Shewchuk 1996] and using exact quadrature. We solve the
Laplace equation for the warping displacemenusing quadratic

nite elements [Hughes 2012].

An important bene t of this approach is that we can compute
sti ness parameters for arbitrary beam pro le geometries (see Fig-
ure 4). As we discuss in more detail in Section 7, this allows us
to incorporate important architectural features into the design of
X-shell beams, such as cable canals or frame xtures. In addition, the
cross-section geometry of the beams provides additional degrees of
freedom for design, since the deployed state of an X-shell depends
directly on the beam sti ness parameters (see also bottom row of
Figure 14).

nr =n

4 FORWARD SIMULATION

With the above representation for the geometry and material proper-
ties of an X-shell structure, we can now formulate our optimization
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Fig. 5. Forward simulation: Given a user-provided network topology, our
method first solves for a low-energy planar configuration that matches the
desired joint locations, e ectively determining the rest lengths of each beam.
Minimizing elastic energy with released joint constraints, while keeping the
structure planar, yields the assembly state. This state can then be deployed
by solving for actuation torques for the joints that achieve a user-specified
average opening angle.

algorithm to simulate the deployment from a given planar assembly
state towards a 3D target state.

We assume as input the graph topology of the beam network and
the 2D locations of the joints in the at con guration. These are the
principal design parameters that we allow the user to interactively
manipulate as explained in Section 7. The forward simulation pro-
cess is split into two parts: an initialization that nds a low-energy
planar assembly state, and the deployment algorithm that computes
the deformation of the X-shell when applying torques at the joints
(see Figure 5).

Rest-length Optimizatiornnteresting deployed shapes emerge if
the joint positions deviate from a regular grid. In such cases, the
rigid scissor mechanisms of the linkage become incompatible and
rods deform and buckle out of plane when the joints are actuated.
Irregular joint spacings mean that the rods potentially need to be
bent in the at assembly to smoothly interpolate the joint locations
in a low-energy state. This poses the challenge of determining their
rest lengths, which are essential parameters of the simulation algo-
rithm. We collect the rest length of each rod into a vectpr2 RIR,
which will also serve as the design parameters for the subsequent
design optimization Section 5. The rest length of a rod is distributed
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evenly across all th& edges making up the rod (to promote a uni-
form discretization). We infer the initial structure's rest lengths by
simultaneously minimizing the elastic energy of (1) over both the
rest-lengths of beam segments and their equilibrium con gurations,
while holding the joint positions xed at their input locations:
in Elx: n°

r)l;l;lrl)‘l Ex; p

$.t.§X = S§Xinput )
p >

Here,§ is a matrix selecting each joint's position variables from
the full vector of state variableg, and is a lower bound on the
rest length variables. We set this lower bound equal *d @0 the
size of the smallest distance between segments. E ectively, this
optimization allows the beams to assume rest lengths that minimize
the elastic energy for a given set of 2D joint locations. We further
optimize this state as described in Section 5 to obtain a low-energy
planar state in which the beams can be assembled with minimal
required pre-stressing (see Figure 5).

Deployment SimulatiorThe planar beam network can now be
deployed by imposing a uniform torque at every joint in the set of
joints J 9selected for actuation. Initially) 9= J includes all joints.

In Section 6 we will discuss how to sparsify the actuation to obtain
a small set of actuation points for physical deployment.

By increasing the torque acting on the joints, we expand the struc-
ture towards its target shape. Instead of prescribing torques directly,
which would be di cult to quantify by the user, we solve for the
torques that achieve a user-speci ed average opening angl€ af
the joints. Speci cally, we simulate the deployment process by min-
imizing elastic energy while imposing a linear equality constraint
on the average of the joints' angles to match:

X 1p; 7° = argminEx; p°
X .

®)

1 . P
St]TU] j230 j =

The single Lagrange multiplier for this equality constraint tells us
the magnitude of torque that must be applied to each actuation joint.
To avoid inversions during the optimization, we also add the same
lower-bound constraint as if2) on the joint edge length variables.
As we increase, the structure is driven open as illustrated in
Figure 1. At some point in this deployment, the planar equilibrium
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attention; the method for solving rest length is identical except for

the removal of the extra system row and column used to impose the
linear equality constraint. Each step of our Newton solver requires
solving the linear system:

H a x
T oo = 2 )

forsteps xand ofthe state variables and the Lagrange multiplier
for the linear equality constraint, respectively. Hei@is the gradient

of the elastic energy (i.e., the net force acting on the X-shal}, R™

is a vector with value 4jJ 9 in each actuated joint angle variable
and 0 elsewhere, anit is the Hessian of the elastic energy with
respect to all optimization variables (includirmin the rest length
solve) after it has been modi ed to be positive de nite as discussed
below. T is the requested increase in actuation angle.

To simulate the full deployment sequence, we subdivide the in-
terval between the closed and open actuation angles into individual
increments of sizd. For each increment, we sol\(@) once with

~ = h and apply the full step x to the linkage. Now the linkage
has the requested average opening angle but is not at a minimum
energy con guration. Next we run several steps of our Newton
solver with  — = 0 to place the structure back in equilibrium.

Hessian modi cationDuring the course of the simulation, and
particularly at the onset of buckling, the Hessiat of the linkage's
elastic energy frequently becomes inde nite. Simply solvi@®in
this situation will often obtain a direction thaincreasethe energy.
Even if a descent direction is found, the linkage will still be attracted
towards saddle points, which is not desirable. We therefore always
check ifH is positive de nite (by attempting a Cholesky factoriza-
tion) and modify it if not. A standard modi cation approach is to
add a scaled multiple of the identity matritd + | . [Nocedal and
Wright 2006]. Applying the inverse of this modi ed matrix to g can
be interpreted as nding the step of a xed length (depending on
that minimizes the local quadratic model; note that this local model
is unbounded from below, so we need to x the step length. How-
ever, since our state variableshave di erent meanings (Figure 3)
and vastly di erent typical magnitudes, the Euclidean norm is a
poor measure of distance. Instead, we use the linkage's mass matrix
M as our metric; then applying the inverse of the modi ed matrix
H=H+ M to ghas a physical meaning of computing the step

of the X-shell becomes unstable (a saddle point of the elastic energy), of xed kinetic energy that minimizes elastic energy. We compute

and the structure abruptly pops out of the plane into a lower energy
con guration, realizing a curved surface in 3D.

Numerical SolveiVe solve both minimization problems inferring
rest lengths and simulating deployment using our own Newton-
based solver, as we found o -the-shelf solvers like Knitro [Artelys
2019] neither fast enough nor su ciently robust in dealing with
the many saddle points in the energy landscape of our X-shells. We
use an active set method to handle the bound constraints onghe
variables and implement hard constraints (like the joint positions
in the rest length solve) by removing the corresponding rows and
columns of the Hessian.

We focus our discussion on the deployment simulation problem
(3)because its linear equality constraint for actuation requires extra
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the full linkage's mass matri by assembling the per-rod lumped
mass matrices using the Jacobian of our mapping from reduced state
variablesx to the individual rod variables. Note that we cannot use
a lumped mass matrix for the full linkage (e.g., by summing the
rows) because this generally has negative entries. Howe\és,
sparsity pattern is a subset ¢f's, so no additional work is added to
the factorization step.

We determine a reasonable initial guess fobased on the largest

eigenvalues oH andM (user-speci ed multiple of :n”gj,\'jlz and
employ a strategy similar to Algorithm 3.3 in [Nocedal and Wright
2006] for updating (multiplying it by 4 repeatedly untiH-becomes
positive de nite and incrementally halving it when the modi cation

is successful.)
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I deployed state

assembly state

assembly state deployed state

4.6

post-optimization

Iy deployed state

assembly statt

Fig. 6. Design optimization. A user-provided initial beam layout leads to
high internal stresses (top), which manifests itself in undulations of the
beams in the deployed state. A er optimization, this undesirable behavior is
eliminated while staying geometrically close to the desired target shape. The
models are colored by the square root of their pointwise bending energies.
The optimization reduces the total elastic energy of the X-shell by more
than 5 in the deployed state and more thai in the assembly state.

Becauséd is positive de nite, we can compute its Cholesky fac-

torization and solve (4) with block elimination:
— Ty 1
= —a al g; X=H 1L g
al'H la

If we start at or step near a saddle poirgwill be approximately
zero even though the energy is not at a minimum. In this case,
we need to move in a direction of negative curvature [Gill et al
1981] to quickly escape the saddle point. Thankfully, due to our
Hessian modi cation, we have already computed the factorization
needed to e ciently compute the eigenvector corresponding to the
most negative eigenvalue (for the generalized eigenvalue problem
Hd = M d) using inverse power iteration. Whenever we detect
that H is inde nite and kgk is below a user-de ned multiple of the
Newton solver's gradient tolerance, we use the C++ library Spectra
to compute this eigenvector and add a scaled version of it foto
compute our line search directiod. We pick the scaling so that the
largest physical velocity it induces on the rod geometry's surface

ao:
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T T T
0 100 200 300
Fig. 7. Convergence of the design optimization for two di erent X-shells.
The plots show the objective function of (5) over the number of iterations. A
quasi-Newton BFGS solver requires significantly more iterations than our

Newton-CG trust region approach.

(i.e. the maximum velocity of points on the swept cross-sections) is
1+100 the minimum arc length of any rod in the structure.

Our solver then does a standard backtracking Armijo line search
[Nocedal and Wright 2006] to compute a step aloth¢hat reduces
elastic energy.

Figure 1 and Figure 5 illustrate the deployment of an X-shell
computed with our optimization. See also the accompanying video
for more examples of the simulation algorithm and deployments of
physical models.

5 DESIGN OPTIMIZATION

The forward simulation approach described above is an essential tool
to explore the design space of X-shells. From an initial user-provided
planar beam network, we can quickly compute deployed states to
evaluate design alternatives. However, the complex deformation
behavior of X-shells makes it unlikely that the deployed state has
low internal stress. In practice we often observe high-frequency
undulations in the beams, because the initial joint locations are
not conducive to a low-energy deployed state (see Figure 6, top).
Manually adjusting the rest con guration is ine ective, because
small variations in the beam rest lengths can have complex global
in uence on the shape and elastic energy of the deployed state.
Optimization of design parameters is thus crucial to obtain high-
quality X-shell designs.

This optimization problem is challenging, not only because simu-
lating the deployment is already a highly nonlinear optimization
problem in itself, but also because we care about two states of the
structure: the at assembly state and the curved deployed state. We
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want the assembly state to be truly at, the deployed state to pro-

Julian Pane a, Mina Konakovi¢-Lukovi¢, Florin Isvoranu, Etienne Bouleau, and Mark Pauly

Likewise W is a diagonal matrix of tting weights for each target

duce a desired 3D shape, and both states to experience reasonablgoint position in xigt. We ensure all of the tting weights (itWsgs
stresses/elastic energy. We formulate these goals as a minimization andW) sum to one so that directly controls the over-allimportance

of the following objective function:
o

1
Jipe = E_0E1X2D1po; p° + ElXgptp% p°+ PT1X3D1pOD; (5)

0

XoptP® = X 1o o (at con guration state vars.),

X3ptP® = X 1p; Tigt® (deployed con guration state vars.),

subject to the following planarity and minimum angle constraints
on the at con guration:
P = kS X,ptp°k2 = 0

min'P° = KS'S Xpp1p;°
Here 2 >0, 1¥irades o between preferring low energy in the
deployed or at state, > 0 controls how closely we want to t the
deployed structure's joints to user-provided target geometry, target
tting energy T (de ned below) penalizes the deployed structure's
distance to this target geometry, arteh andlg are normalization
constants (the initial deployed structure's energy and the length of
its bounding box diagonal, respectively).

S, andS are matrices selecting the jointg' coordinates and
opening angles from the full vector of state variables (the§&j m
matrices have a single 1 in each row and zeros everywhere else).

We use the popular constraint aggregation functi&fg' ;s° =

slogt ;e i*So[Kreisselmeier and Steinhauser 1979] as a smooth,
conservative approximation to the minimum. This smooth function
converges to the exact, non-di erentiable minimum ag 0, and
we founds = 0:01 to be a good trade-o between smoothness and
approximation delity.

The initial actuation anglé g is chosen just large enough to keep
the structure's minimum opening angle greater than some threshold

to avoid interpenetrations of neighboring beams in the assembly
state. The target actuation angleg; is speci ed by the user and
can be adjusted interactively during the optimization process.

Surface FittingThe tting energy termT penalizes deviation of
the joint positions from a user-provided target surface. This allows
the structure to slide along the design surface to minimize internal
stress and thus provide a more e cient X-shell. However, without
further constraints, joints displacements could be signi cant, poten-
tially even closing up the structure to reduce the elastic energy. We
therefore also incorporate in the tting term a set of user-speci ed
target positionsxtgt for each joint, to which the joints are t with
a smaller weight. This is analogous to the commonly used com-
bination of point-to-surface and point-to-point distance terms for
non-rigid registration [Chang et al2012]. The full tting term is
then given by

1 1
Tix0 = ékX Psurf1x°l€\,su" + Ekx thtl"\%/; (6)

where Pg,£X° projects the joint positions of the deployed structure
con guration x onto their closest points on the target surface. The
diagonal matrixWss holds user-provided weights that indicate
the importance of tting each individual joint to the surface (only
entries corresponding to joint position state variables are nonzero).
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of tting.

Numerical SolveEspecially for high values of, the three con-
icting terms of the objective function lead to an ill-conditioned
optimization problem. This makes it is essential to incorporate ac-
curate Hessian information from the start. We found that a quasi-
Newton method such as BFGS [Nocedal and Wright 2006] requires
too many iterations to converge (see Figure 7); recall that each iter-
ation of the design optimization requires re-solving for both the at
and deployed equilibrig3). On the other hand, computing the full,
dense Hessian af andc with respect to the design variablgsis
intractable. We therefore propose to solve this optimization prob-
lem with a Newton-CG trust region method. This approach allows
larger step sizes and thus converges in fewer iterations, but only
requires computing analytic gradients dfandc with respect to the
design variables, as well as Hessian-vector products (the gradients'
directional derivatives). We show in Appendix B how to e ciently
compute this required derivative information and provide more
implementation details in Appendix A.

Optimizing X-shellsThis design optimization of (5) facilitates an
inverse design mode where the user edits the target geometry and
alters the tting weights. It can also be used as an automated tool for
improving an existing structure created with our interactive design
interface described in Section 7; in this mode we chogrgg as the
joint positions of the original deployed structure and construct a
target surface by triangulating the linkage's quads. We re ne this
mesh with two steps of Loop subdivision. For all examples shown
in the paper we choos¥/yf to have a total weight of ® spread
equally across all joints. The remainingDis distributed among the
target position tting weights inW; we found it helpful to set a 10
higher weight inW for the joints of valence 2 (sharp corners) than
the rest to better preserve the extremities of a design.

Figure 6 illustrates how this optimization signi cantly improves
the quality of a given X-shell design. All examples shown in the
paper employ this method to jointly optimize at and deployed
state.

6 OPTIMIZING ACTUATION

A key bene t of X-shells is that they can be intrinsically actuated
at the joints to deploy to the desired target shape, in contrast to
traditional grid shells whose boundary nodes need to be explicitly
forced towards pre-de ned target positions.

The deployment simulation described in Section 4 applies the
same torque on each of the X-shell's joints. While this is ideal for
fully opening all parts of the structure and avoiding large localized
deformations and forces, it is not practical for most physical de-
ployment scenarios to equip each joint with an actuator. We note
that while X-shells generally deploy into similar shapes regardless
of the actuation forces applied due to their resemblance to 1-DoF
scissor linkage structures, the precise deployed shape still depends
on where forces are applied since they must elastically deform the
beams. We therefore propose an optimization algorithm to solve for



Fig. 8. Sparse deployment. A set of just four actuators computed by our
sparsifying algorithm deploys this X-shell to a target state that is very close

to the densely actuated model, where each joint would need to apply an

expansive torque.

a sparse set of actuation torques that best deploy the X-shell to the
desired target state.

Arbitrary Torque ActuationWe rst introduce a slightly di erent
formulation of Equation(3)for the deployed linkage's equilibrium
solve:

X ©= argminEx° S x
X

Here we drop the dependence on the design paramepexghich
we assume are known at this stage. Recall t8atis a matrix that
selects the joints' opening anglesfrom the full vectorx of state
variables. Note that the solution t@3) can simply be written as
X ITo=»x1 179 where 1 °isavectorwithallentriesequaltothe
Lagrange multiplier for actuation in the angle constraint ¢8). This
formulation allows us to simulate the equilibrium corresponding to

to the setJ of 1-DoF rotational joints.

Sparse ActuatiorOur goal is now to nd a sparse vector that

X-Shells: A new class of deployable beam structures =~ 83:9

Fig. 9. Performance of thg, regularization term for optimizing actuation.
Each dot corresponds to a di erent value for that controls the trade-o
between fi ing term and sparseness of the actuatiop.= 1+ 2 consistently
leads to fewer actuatorandsmaller deviation from the target shape.

problem. The common approach is to replace this non-conugx
norm with the convex approximation obtained by setting = 1.
Choosing the 1 norm indeed leads to a sparse vector of torques
in our setting, but does not drive the smaller torques to zero quite
as aggressively as we want. Also, since our problem is already a
nonconvex minimization, it is less essential to use a convex regular-
ization term.

Several techniques have been proposed to improve pwith
nonconvex regularization terms. For instance, one can iteratively
weight the *1 norm to place more emphasis on the small entries
[Candes et al2008] or reformulate theég term using complementar-
ity constraints [Feng et al2013]. The former is not e cient in our
setting since each weighted instance of thesparsi cation problem
is still a nonconvex minimization, and the latter did not work well in
our experiments. Instead we chose to minimi@gwith 0< p < 1.

For this choice op, calculating the derivatives of the regularization

term involves nearly dividing by zero as torques approach zero.
This is avoided in [Chartrand 2007] by adding an epsilon term to
the denominator, but we prefer to introduce a change of variables,

deploys the X-shell to the same target state as the dense actuation at de ning a new variable vectot 2 RIJI with tj = ip. Then we can

each joint, so that only few joints need to be equipped with physical
actuators. For this purpose we solve the following minimization
problem: o)
min  Tixt %+ ip;
I max |
where max is the maximum torque that can be safely applied by
an actuator, is the weight for the sparsifying regularization term,
0<p 1listhe power for approximating thég norm, andT is the
tting energy from (6). Here, the target joint positions are taken from

)

write the minimization problem as:

Tiatl*Poot

p .
max i

min
0t

ti; (8)
where the regularization term has now become a standagchorm
in the new variables. We note the similarity of this formulation to
the SIMP method used to encourage binary designs in topology
optimization [Sigmund 2001].

Figure 8 shows an example where only four actuators are su -

the densely actuated deployed equilibrium, and the target surface cient to deploy the X-shell to its desired target con guration. By
is constructed by triangulating the linkage's quads and performing varying , we can explore the trade-o between preserving the de-
Loop subdivision. For the examples shown in the paper, we opted to ployed shape and using fewer actuators. To compare the various
keep all joints of the sparsely deployed structure as close as possible choices of regularization terms, we ran a sweep oveand plotted

to their original positions, so we sé&t/y s = 0 and weighted each
joint equally inW.

Whenp = 0, the regularization term directly counts the number
of actuators, but results in an extremely challenging optimization

the approximation distance as a function of the number of actu-
ators; see Figure 9 for the results. We found tipat 1+2 leads
to consistently better results compared to the standagdnorm
(p = 1) in all our experiments. The other values fprthat we tested
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Fig. 10. Overview of our design tool. Starting from a regular quadrilateral
grid, the designer adds or deletes nodes in the graph, controls the positioning
of joints using a variety of direct manipulation tools, and evaluates the
resulting deployed shape computed with our forward simulation algorithm.
Once an overall satisfactory shape has been found, the optimization method
refines the design to reduce the internal elastic energy of both the flat
assembly state and deployed target state.

113 1+4; 18, ::° gave indistinguishable results from = 12 but
took longer to converge.

Note that since the deployed equilibrium shape is closely pre-
served, the sparse set of actuators still need to output the same
amount of total work to deploy the structure as the original dense
actuators. Therefore the torque each actuator must apply is roughly
inversely proportional to the number of actuators. The torque bound

max Will automatically stop further sparsi cation once the actua-
tors' force output limits are reached.

7 RESULTS

We integrate forward simulation (Section 4) and design optimiza-
tion (Section 5) into a form- nding tool that enables interactive
exploration of X-shell designs. As illustrated in Figure 10 and the ac-
companying video, our tool allows the designer to manipulate both
the topology of the beam network and the initial joint locations. Our
implementation is integrated in the professional modeling software
Rhinoceros3D in order to leverage direct manipulation tools such as
cage-based editing, smart brushes, and smooth warping functions
to manipulate joint locations.

Figure 14 shows a collection of X-shells to give a sense of the
kind of designs possible with our approach. Note that none of these
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Table 1. Statistics for some of our designs. Timings for forward simulation
(sim) and design optimization (opt) are in seconds, measured on a MacBook
Pro (2017), 3.1 GHz Intel core i7-7920HQ.

X-shell \ segments joints DoF  sim opt

Fig. 6 264 146 8970 1.618 97.56
Fig. 7 top 440 237 14893 4.023 58.68
Fig. 7 bot. 216 122 7362 2.202 205
Fig. 10 438 238 14844 3.00 167
Fig. 13 288 157 9765 2.09 17.36

examples could be realized with traditional grid shells, highlight-
ing how our approach o ers new form typologies for design. The
examples in the bottom row of the gure illustrate how the defor-
mation behavior of an X-shell depends on the cross-section pro le
of the beams, which in turn determines the sti ness parameters for
stretching, bending, and twisting as discussed in Section 3.

Table 1 lists some performance data and other statistics of the
shown examples.

Physical PrototypeFigure 2 and Figures 11 to 13 show physical
prototypes that we fabricated from di erent standard materials:
wood, aluminum, and berglass. These examples indicate how dif-
ferent graph layouts and beam material properties can achieve inter-
esting freeform structures that correspond closely to the simulated
digital models.

All our physical prototypes use simple riveting to implement
rotational joints for the beams. The model in Figure 2 is assembled
from L-shaped aluminum pro les of 10mm 10 mm with 1 mm
material thickness and deploys into a negatively curved target state
approximating a hyperboloid. Observe how the beams are bent in
the at state, but almost straight but twisted in the deployed state.

For deployment, we did not have torque actuators at our disposal,
so we instead opted for a simpler strategy that pulls the structure
open using strings (see Figure 12 and accompanying video). Even
though the corresponding forces di er signi cantly from the cal-
culated torque actuation, the optimized actuation joint set still in-
formed us where to attach the ropes, and the deployed shape was
closely reproduced. This points to a key advantage of X-shells: es-
sentially, a well-designed X-shell behaves like a 1-DoF linkage, with
just a single low energy deployment path. In this sense, the target
shape is directly encoded in the atassembly state, which makes the
deployment robust under deviations from the prescribed actuation
mechanism. There is one subtlety though: Since the assembly state
is at, there is ambiguity (mirror symmetry) in the vertical direction
when deploying the structure. Friction and gravity typically break
this symmetry in the desired way, but sometimes explicit control is
necessary as in Figure 12.

Architectural Design Stud¥igure 1 shows a speculative design
studies to illustrate potential applications in architecture. X-shells
o er a number of key advantages for construction: simple assem-
bly on the ground from linear beam elements joined with identical
rotational joints; fast and robust deployment; no need for any tem-
porary formwork. This makes them ideally suited for temporary
spaces, cost-constrained projects, or environments where involved



Fig. 11. Positive and negative curvature in a double-dome structure com-
posed of wooden slats with a rectangular profile 85 7mm  8:1mm. As
shown in the zoom, a material defect in one of the beams a poorly aligned
wood grain direction led to a fracture at the last step of opening.

Fig. 12. Resting on only few ground contact points, this double-wing X-shell
naturally supports complex free boundaries. The fiberglass beams have a
rectangular profile ofi2nm 8 mm. In this example, we use additional
ropes to suspend the structure, which ensures that the vertical symmetry of
the planar assembly state is broken in the desired way so that the wings
are deployed upwards. The bo om images show intermediate stage of the
deployment process.

construction processes are di cult to perform. Additional facade
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Fig. 13. This positively curved surface is assembled from fiberglass beams
with rectangular profile oft5mm  3mm. Due to the beams' weak resistance

to out-of-plane bending, the assembly configuration does not lie flat, neither

in our simulation nor in the fabricated prototype.

sti cushions after deployment. Potentially, deployment could even
be driven by the in ation process, providing a fairly uniform and
distributed expansive actuation across the structure.
While our focus in this paper is on large-
scale applications in architecture, our phys-
ical prototypes inspired other use cases, such
as kitchen utensils (deployable pasta drainer),
a retractable children's playpen, or deploy-
able furniture such as foldable chairs or coat
hangers (see inset). For these applications,
the compactness of the assembly state o ers
additional advantages for transport and storage.

8 LIMITATIONS AND FUTURE WORK

Our current optimization-based design approach makes several sim-
plifying assumptions with respect to the physical realizations of
our prototypes or potential industrial applications. Joints in our
prototypes are realized by rivets to support the required rotational
motion. We do not currently take into account distortions in the
beam sti nesses at the joints due to the hole required to accommo-
date the shaft passing through both connected beams. These holes
can create weak points that led to material failure in the prototype
using wooden slats (Figure 11).

The geometric representation of X-
shells assumes that crossing beams spa-
tially coincide at the joints, while phys-
ical realizations require an o set dis-
tance between joined beams. For the
rectangular and L-shaped beam pro les
of our physical prototypes, we observed
that this discrepancy did not lead to sig-
ni cant error between simulated and

elements, such as glass panels, can be added after deployment. Cerebserved model. For large-scale architectural deployments, joints

tain types of cladding could even be integrated during assembly.
For example, the exible EFTE membranes shown in Figure 1 could
be attached to the beams in the at state, then be in ated to form

such as the one shown in the inset could be used. However, in this
case, the o set distance between joined beams could be signi cant
and should be accounted for in the model.
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Fig. 14. X-shell design zoo. A large variety of double curved geometries can be deployed from flat assembly states. The bo om row shows how di erent
cross-section geometries of elastic beams (sketched next to the models) of the same material lead to di erent sti ness parameters, and consequently di erent
deployed states for the same assembly configuration. This o ers additional control for form finding and design optimization.

Our current representation is restricted to valence-4 interior Curved rest shapes o er even more design exibility and might help
joints. Extensions to more general networks require more complex to improve the structural performance of an X-shell.
joints, which poses an interesting avenue for future research. The  Each X-shell design has to negotiate trade-o s in geometric and
core of our simulation approach should extend naturally though. physical complexity, structural e ciency, and artistic expression.
The simulation framework supports varying the cross-sectional Interesting questions arise in how to best navigate these trade-
pro le and material properties along a beam. Currently this func- 0 s and more research is needed to develop e ective design tools
tionality is not exposed in the design framework and none of our that can incorporate all the above mentioned additional design
prototypes explores these additional degrees of freedom for design. parameters not currently considered in our system.
Since modern production processes such as laser cutting or extru-  Not all X-shells perform equally well. Certain target shapes cannot
sion casting allow varying the cross-sectional pro le of beams, this be approximated well or would require X-shells with high internal
could be an interesting extension to explore in the future. Simi- stress, which would make them impractical to build. At this stage
larly, we currently assume that all beams have a straight rest shape. we do not have a formal classi cation of the space of shapes that
permit e cient X-shell realizations, nor do we have a solution for
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We can also exploit our existing elastic energy Hessian factor-
izations for the at and deployed states to further improve the
performance of our inner Newton solver thereby enabling the
outer Newton CG algorithm to take larger steps. Instead of sim-

Elastic energy Hessians and their derivatiVég. full expressions ply applying the new design parameters/actuation forces to the
of (1) are provided in the supplemental material. We also give a linkage and rerunning the equilibrium solver initialized with the
derivation of the gradients and Hessians that corrects errors in previous iterate's equilibrium con guration, we can use the pre-
the original equations of [Bergou et 22010]. The Hessian-vector  factored Hessians to predict the equilibrium deformation under the
product formulas needed to run Newton-CG on the design opti- new settings. Given a parameter step requested by the outer
mization and actuation sparsi cation problems require computing  optimization, we construct a second order Taylor expansion of the

In this section, we comment on additional implementation aspects of
our numerical solvers for forward simulation, design optimization,
and actuation sparsi cation presented above.
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equilibrium displacements along this direction. Considering the
deployed equilibrium as an example,

@3 p+ 1T @xap
@ 27 @@

In Section B, we compute the rst order chang% p as the quan-

3o.

Xgp'P+ P°= Xgp'p®+ p+Ot p

tity X4pand show how to nd second order changep” % p.
This strategy particularly bene ts the design optimization, where
it reduces the likelihood of the elastic energy Hessians in the inner
equilibrium solves becoming inde nite: applying even mild changes

to the design parameters while holding the equilibrium xed of-
ten immediately puts the structure in an inde nite con guration.

In principle, higher order or multiple-step continuation methods
could also be applied [Allgower and Georg 2012; Chen £2@14] at

the cost of additional computational and implementation complexi-
ties (e.g., computing fourth derivatives of elastic energy). For the
purposes of accelerating the outer optimization, this simple second-
order continuation method strikes a good balance of reducing the
subsequent Newton corrector iterations with low overhead: just
two additional backsolves for each con guration.

Sparse factorizationgVe compute sparse Cholesky factorizations
of the elastic energy Hessiat$ using Cholmod [Chen et aR008],
which also informs us wher is inde nite so that we can apply
our modi cation scheme to forntt. Since the sparsity pattern déf
remains xed across all equilibrium solves (and is identical for both
the at and deployed linkages), we perform a single symbolic factor-
ization that we re-use throughout the entire design optimization. We
update the numeric factorizations of the at and deployed structure
Hessians at the end of each Newton iterati¢h). We nally use the
factorizations computed at the end of the nal iteration to compute
the adjoint state variables (for the design problem's gradients), the
directional derivatives of the equilibrium and adjoint state variables
(for the Hessian-vector products), and the second directional deriva-
tives of the equilibrium (for predicting the equilibria at the next
design optimization iterate) with back substitution.

ConstantsThe number of linear elements comprising each rod
is set to 10 for all examples shown in the paper. This was chosen by
comparing the accuracy of a discrete rod wittsegments against an
analytical solution for a planar elastica curve; 10 subdivisions gives
less than 1% error in the bending forces over the range of bending
magnitudes an X-shell might reasonably experience.

B GRADIENTS AND HESSIANS

We describe how to compute the derivative information required
to apply Newton CG to the design optimization (5) proposed in
Section 5. We present only the objective function's derivatives here,
since the process for di erentiating the constraints is analogous, but
we provide the full set of formulas in the supplementary material.
For gradients, we solve for the adjoint deployed state ve@g&or

Hap a w _ W X35 Xtgt +Wsurf X3p Psurf Xgp .
aT 0 w 0 !
| {z }

Kap
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whereHsp = %lep% pl is the elastic energy Hessian for the
deployed X-shell equilibrium, and scaler is ignored. With this
adjoint state, we can e ciently evaluate the objective's gradient,

@ = — @1X2D; p0 + 1 0@1X3D; pO _2 T @lng;
@ B© B @ 127 @@
To compute Hessian-vector products, we compute the variations

of forward and adjoint state vectorsx,n, X5p, and w that arise
from parameter perturbation p b)q/#solving:

P

E1 .o
K3p X3p = &@ X3P P .
3D 0
" - M
surf
Kep " = W X3p+Wsurf X35 & Xap
w 0

" #

E . E .
Bo Xap P Xap* G e P P W

0

where the derivative of the closest point projectio% can be
computedas n nwhenthe closest point lies on a surface triangle
with normaln,e ewhen it lies on a surface edge with normalized
edge vector, and 0 when it lies on a vertex. The formula fov<2D
is analogous to x5 and is given in the supplement.

The Hessian-vector products farcan now be calculated:

@J @E . @E .
@6 "B @& »F " gg P
+11 o @E

1X -pO X + E 1X -po p
EO @@ iD’ 3D @@ 3D

SaXap P,
0
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_ %@Xsovp X3D+£@@X3D'p Pw:
12 0

Notice that we can reuse the factorization Kfp that was com-
puted to solve the adjoint equation, so the added cost for computing
a Hessian-vector product for the objective is simply three additional
back substitutions for x,, X4 and w. While these formulas
involve third derivatives of the elastic energy, really only tluérec-
tional derivativeof the elastic energy Hessian is needed. Since we
have e cient analytic Hessian expressions for our forward simula-
tion, these directional derivatives can be calculated inexpensively
with automatic di erentiation (di erentiating a function that imple-
ments the elastic energy Hessian-vector product).

Finally, the second order change in the deployed equilibrium
induced by perturbing the design parameters by is:
@x
"e& M. Gea %o eee P Yo
P ae P 0

" #
HG o' ToE P P
0

ol

#

Ksp

and analogously fox,.
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